Autohaemotherapy After Treatment of Blood with Ozone.
A Reappraisal

V Bozzi

Institute of General Physiology, University of Siena, Siena, Italy

Autohaemotherapy, involving blood treatment ex vivo of blood with ozone and prompt reinfusion into the donor, is a procedure mainly performed in central Europe, which is claimed to have therapeutic value in circulatory disorders, viral diseases and cancer. This practice is mostly performed in private clinics, and good clinical trials have not been published, which has understandably given rise to prejudice and scepticism. By analysing possible mechanisms of action and current hypotheses, this report attempts to explain how this procedure can be useful in such disparate diseases. The current state of the art is presented objectively, the lack of toxicity is documented, and the rationale and therapeutic advantages are discussed, with the aim of eliciting interest in carrying out controlled clinical trials.

KEY WORDS: AUTOHAEMOTHERAPY; ARTERIOPATHIES; OZONE; CYTOKINES; IMMUNOTHERAPY; VIRUSIS; NEOPLASIA

INTRODUCTION

Major autohaemotherapy using about 100 ml of human blood treated with a gaseous mixture of oxygen and ozone has been used since the 1950s particularly in central Europe and, by 1980, no less than 340,000 treatments had been performed without any untoward effects. A variety of unrelated diseases such as acute and chronic viral diseases, neoplasia, vascular disorders such as obstructive arteriopathies, various inflam-
How can autohaemotherapy be useful in many different diseases?

The key to understanding the value of this autohaemotherapy treatment in a variety of diseases lies in the heterogeneity of blood components (Table 1) and in the possibility that after oxygen/ozone exposure, different blood cells undergo different trophic, biochemical and immunological changes that have beneficial effects on unrelated diseases. It is unfortunate that basic research has been concentrated more on evaluating the damaging effects of ozone than on showing the metabolic changes after ozone exposure that may result in therapeutic efficacy. Both proven and hypothetical mechanisms of action are discussed below for each of the various blood components.

The role of erythrocytes

Erythrocytes are probably ozone's main target because the erythrocyte present in 100 ml of blood exposes a considerable surface area of 70 m². Ozone decomposes in a matter of seconds and generates reactive species that are firstly in part quenched by antioxidants present in plasma (Table 1).

Blood components affected by ozone treatment

<table>
<thead>
<tr>
<th>Percentage of blood volume</th>
<th>Blood component</th>
<th>No. in 1 ml of blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>Plasma (a reservoir of antioxidant components)</td>
<td>~5,000,000</td>
</tr>
<tr>
<td>45</td>
<td>Erythrocytes</td>
<td>~250</td>
</tr>
<tr>
<td></td>
<td>Neutrophils, basophils and eosinophils</td>
<td>~1,200</td>
</tr>
<tr>
<td></td>
<td>Lymphocytes</td>
<td>~300</td>
</tr>
<tr>
<td></td>
<td>Monocytes</td>
<td>~300,000</td>
</tr>
<tr>
<td></td>
<td>Platelets</td>
<td></td>
</tr>
</tbody>
</table>
and 2), secondly, or simultaneously, act by oxidizing cell membrane phospholipids, glycolipids and glycoproteins, and thirdly, may act by inactivating intracellular components such as enzymes and DNA after exhausting the reserve of intracellular reduced glutathione. Thus the deleterious effects of ozone largely depend on the dynamic equilibrium between ozone concentration, duration of exposure and endogenous intracellular antioxidants. Only by using low concentrations for a very short time can the ozone attack be limited to the cell membrane where it exerts its non-specific action.

Oxidant effects can now be estimated by several assays but the most readily available and simple criterion is the extent of hemolysis. A range of ozone concentrations between 5–75 µg/ml of normal blood provokes a progressive increase of hemolysis between either 3.1% or 1.5 and 3.4%, compared with control treated with normoxic air, respectively, depending upon whether the anticoagulant used is citrate-phosphate-dextrose or heparin (25 IU/ml). It is likely that erythrocytes that are 180 days old or more (about 20% of the mass) become the most susceptible to the oxidative action of ozone, which may accelerate their disappearance from the circulation. Obviously, it is essential to use the ozone concentration that, while improving the rheology and biochemical characteristics of erythrocytes, causes minimal damage to them. Should any amount of hemoglobin become free, it would readily bind to haptoglobin, thus minimizing the generation of harmful hydroxyl radicals, promoters of cell damage and generators of chain reactions.

There are several mechanisms of action (Table 3) through which oxygenated blood can improve the stimulation and oxygenation of hypoxic tissues. It is not yet clear whether the increased amount of 2, 3-diphosphoglycerate is secreted either into endogenous therapy, or after instillation of ozone into the column remains at higher levels than normal for the remaining cell life-span. A permanently higher content of 2, 3-diphosphoglycerate in successive columns of erythrocytes undergoing the usual bi-weekly procedure may significantly improve oxygen availability to hypoxic tissues, thus rationalizing this approach in ischemic arteriopathies.

Another useful aspect is represented by the improved rheology of erythrocytes at the capillary level seemingly due to their improved flexibility and charge modification. An intriguing new development under study in this laboratory is the micro-

Antioxidants present in human plasma capable of preventing lipid peroxidation

<table>
<thead>
<tr>
<th>Proteins</th>
<th>Small molecular weight chemicals</th>
<th>Vitamins and prohormones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin</td>
<td>Glucose</td>
<td>Ascorbic acid</td>
</tr>
<tr>
<td>Haptoglobin/hemopexin</td>
<td>Uric acid</td>
<td>α-Tocopherol</td>
</tr>
<tr>
<td>Carotenein</td>
<td>6-gluconic acid</td>
<td>β-Carotene</td>
</tr>
<tr>
<td>Transferrin</td>
<td>Reduced glutathione</td>
<td>Lycopene</td>
</tr>
<tr>
<td></td>
<td>Cysteine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cysteamine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thiamine</td>
<td></td>
</tr>
</tbody>
</table>
Possible mechanisms of action through which anti-coagulated blood blandly treated with a \(O_2/O_3 \) mixture can ameliorate ischaemic diseases

Mechanism

Improvement of blood rheology

- Increased amount of 2,3-DPG in erythrocytes
- Rightward shift of the Hb-O dissociation curve with consequent improvement of \(O_2 \) delivery to hypoxic tissues

Release of ATP

- Release of eicosanoids (prostaglandin \(E_1 \))
- Release of heamopoietins
- Release of angiogenic and/or trophic factors

CPC, dihydroxyacetone; Hb-O, oxygenated haemoglobin; ATP, adenosine triphosphate.

Release of adenosine triphosphate (ATP) from oxidized erythrocytes.\(^{26}\) Pharmacological infusion of ATP is known to cause hypotension.\(^{27}\) Depriving hypoxic tissues of an already critical blood supply. A micromelrelease of ATP in the ischaemic environment may, on the other hand, cause a local vasodilation, thereby improving blood flow. At this stage other hypothetical, yet likely, agents are some of the eicosanoids, nitric oxide, angiogenic and/or growth factors from platelets and endothelial cells.

All of these possibilities may be relevant to the clinical responses seen after anticoagulation therapy.\(^{28,29}\) It appears likely that a combination of these factors contributes to improving the circulation and oxygen delivery in the hypoxic microenvironment.

THE ROLE OF BLOOD MONONUCLEAR CELLS

By far the most exciting development of the field has been to find that ozone, used in appropriate concentrations, can act as a mild cytokine inducer.\(^{30}\) Major anticoagulmonary therapy was considered useful for the treatment of acute, chronic, viral diseases (herpes, hepatitis) and neoplasia, because it induced leukocytosis, and improved the phagocytic and bacterioidal activity of leukocytes with concomitant enhancement of immunoactivation production.\(^{10}\) It has also been postulated that ozone may both inactivate viruses in blood and accentuate the lysis of infected cells as these become poorly equipped to counteract the action of peroxidases.\(^{25}\) It is true that ozone expresses virucidal activity in plasma,\(^{25,26}\) but it is unrealistic to suppose that this may represent an important mechanism for the therapy of viral diseases. The biological effects just outlined seem to be the consequence of a more profound immunological activation. Indeed the breakthrough came with the discovery that ozone can activate monocytes and lymphocytes, and induce the production of an array of cytokines\(^{31}\) such as interleukins IL-1, IL-2, IL-6, interferon (IFN)-\(\beta \), IFN-\(\gamma \), granulocyte-macrophage colony stimulating factor (GM-CSF), tumour-necrosis factor (TNF-\(\alpha \)) and transforming growth factor (TGF-\(\beta \)). Other cytokines will probably be detected as these studies continue. After the seminal reports by Borovsinsky et al.,\(^{43}\) and Böhm et al.,\(^{44}\)
A simplified list of cytokine inducers for blood mononuclear cells

<table>
<thead>
<tr>
<th>Mitogens</th>
<th>Antigens</th>
<th>Antibodies</th>
<th>Proteases</th>
<th>Interleukins</th>
<th>Oxidizing Agents</th>
<th>Ca²⁺ Ionomophores</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHA</td>
<td>Viruses</td>
<td>anti CD3, etc</td>
<td>Trypsin</td>
<td>Interleukin 1</td>
<td>Periodate</td>
<td>A23187</td>
</tr>
<tr>
<td>Con A</td>
<td>Endotoxins</td>
<td></td>
<td>Bromelain</td>
<td>Interleukin 2</td>
<td>Hydrogen peroxide</td>
<td></td>
</tr>
<tr>
<td>PWM</td>
<td>Tumoral proteins</td>
<td></td>
<td>Thrombin</td>
<td>TNFα</td>
<td>Galactoside oxidase</td>
<td></td>
</tr>
<tr>
<td>SEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ozone</td>
<td>Ozone</td>
</tr>
</tbody>
</table>

PHA, Phytohaemagglutinin; Con A, Concanavalin A; PWM, Polynuclear Mitogen; SEB, Staphylococcal enterotoxin B; CD, Cluster of differentiation; TNFα, tumour necrosis factor; A23187, Ca²⁺ Ionomophore.

A schematic outline for the induction of cytokines by ozone in blood mononuclear cells.

It was logical to advance the hypothesis that ozone, among other agents (Table 4), may act as a cytokine inducer (Fig. 1), triggering a number of immunological mechanisms that are crucial for clearing chronic viral infections and possibly neoplastic cells.

THE ROLE OF PLATELETS

At this stage it is not known if and how platelets react with ozone. Several types of study are warranted as platelets are likely to release several factors, among which TGFβ1 has already been measured in plasma (Sch...
et al. manuscript in preparation) but could
be partly of lymphocytic origin.

THE ROLE OF POLYMORPHO-
NUCLEAR LEUKOCYTES
Besides the enhancement of phagocytosis
mentioned above, it is not known whether
ozone activates polymorphonuclear leuko-
cytes directly, or indirectly via the release of
cytokines, such as IFNγ, TNFα and IL-8, but
it is certain that either neutrophils or eosino-
phils are able to release an array of cytokines
such as IL-1β, IL-3, IL-6, IL-8, TNFα, and various types of CSFs as well as
TGFβ.

THE ROLE OF PLASMA
COMPONENTS
No information is available on the possible
effect (activation or inactivation) of ozone,
particularly on lipoproteins and coagulation
factors.

A number of investigations are needed to
clarify the factors present in ozonized blood
and thus assist in understanding, and possibly
improving, this therapeutic approach.

THE OPTIMIZED
PROCEDURE USED IN OUR
LABORATORY
Minimizing blood cell damage during ozone
treatment is of the utmost importance. As
would be expected, there is a dose-effect
relationship between ozone concentration,
duration of exposure and the production of
cytokines. The biological response to
ozone treatment varies widely between
blood samples, not only because blood
mononuclear cells of different individuals
vary in their ability to respond to certain
stimuli, but also because each blood sample
has a variable level of antioxidants. Attempts
have, therefore, been made to improve the
procedure currently used as follows: for
each autohaemotherapeutic treatment 350
ml of blood is collected in a bag containing
6250 IU of heparin (25 IU/ml of blood), plus
3 mM Ca²⁺ (CaCl₂) after total removal of cit-
rate-phosphate-dextrose. The increase in
extracellular Ca²⁺ greatly enhances cytokine
production as recently reported in detail, and
depicted schematically in Fig. 2. The
involvement of Ca²⁺ in signal transduction
events leading to T-cell lymphokine gene
expression has been reviewed recently.

The oxygen/ozone gas mixture, containing
a total of 14.75 mg of ozone (50 μg Cl/ml
of blood), is rapidly added with gentle mix-
ing, after which the blood is slowly rein-
fused into the donor. Using this procedure,
hemolysis does not exceed 2.0 ± 0.7% and
leukocyte-rich blood glutathion decreases no more than about 6%. In normal
volunteers, 2 - 3 days after autohaemothera-
py, there is a distinct increase in the
expression of the Mx protein in circulating
blood mononuclear cells, that is a specific
marker of IFN production.[6,11] This is not in
contrast with the lack of modification of
cytokine levels in plasma, a fact in itself
explaining the excellent tolerability of the
treatment. Subjects undergoing the treatment
receive, by mouth, daily, a multivitamin sup-
plement (including vitamins E and C). Pati-
ents who are hypersensitive to heparin,
under anticoagulant therapy, or prone to the
haemorrhagic syndrome should be given
autohaemotherapy simply using citrate-
phosphate-dextrose.

IS OZONE A DOUBLE-EDGED
SWORD AND DOES
AUTOHAEMOTHERAPY
CAUSE SIDE-EFFECTS?

These issues are important and results to far
obtained need to be emphasized to convince
clinicians that the haemotherapeutic treat-
ment is absolutely safe.
One possible mechanism of superinduction of blood mononuclear cells. CPD, citrate-phosphate-dextrose.
During the last 3 years both the role of ozone concentrations and the timing of exposure have been investigated by following four parameters, namely the extent of haemolysis, intracellular reduced glutathione, blood mononuclear cell viability (tested by Mosmann’s method), and cytokine production. It has previously been shown that ozone expresses dualistic effects: at high concentrations, impairing the cellular and humoral immune response in animals and subjects undergoing chronic exposure. Indeed, when high concentrations (above 25 µg/ml) of ozone were used, and particularly when blood was exposed to a constant infusum of ozone for periods longer than 30 sec, there was a progressive increase in haemolysis up to 32%, a decrease of intracellular reduced glutathione by as much as 47%, a significantly reduced blood mononuclear cell viability and erratic production of cytokines. On the other hand, in practice, when the ozone contact with the blood is for a few seconds and the ozone concentration is lower than 25 µg/ml of blood, haemolysis is no higher than 8%, intracellular reduced glutathione decreases by only 8.3%, blood mononuclear cell viability is not impaired and there is significant production of cytokines. These results must be so far, by virtue of the relevant antioxidant properties of plasma and second, because all metabolically active cells display antioxidant mechanisms by means of several enzymatic systems such as catalase, superoxide dismutase and glutathione reductase. The efficiency of glutathione homoeostasis is impressive within about 30 min after ozone treatment. Intracellular reduced glutathione levels are almost completely restored. It was previously shown that glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase are the two key enzymes that, by metabolizing glucose to ribulose-5-phosphate, generate reduced nicotinamide dinucleotide phosphate, the fundamental substrate for the glutathione-reductase cycle. Considering the enormous surface area exposed by erythrocytes, it appears that ozone action is likely to be dispersed on an almost infinite number of targets on the plasma membrane, hardy reaching the cytoplasm, as documented by the negligible and transient reduction of intracellular reduced glutathione.

It appears that the potential toxicity of ozone should not prevent its use if a judicious concentration is used and because blood can minimize the formation of free radicals and convert oxidants to less toxic species. At the correct dose, ozone, like any other drug, can do more good than harm and in the biomedical sciences, the concept that even a poison may represent a useful drug at a particular concentration, is a familiar one. Further, a revision of the, so far, dogma, conceived that oxidants are always deleterious, is in progress; indeed, the physiological activity of nitric oxide is a paradigmatic example and the production at low levels of highly reactive species may serve important roles in cell proliferation, defence and regulation of the immune system.

Experience in normal volunteers and in patients suggests that autohaemotherapy does not cause any side effects and gives a sense of well-being in about 30% of subjects. Whether this is a placebo effect or a result of the supposed release of certain hormones remains to be determined. There is no risk of cross-infections because each donor must receive his/her own blood and the procedure is safe, simple and easily performed in about an hour, after which the patient can return home. Transfusion-related acute lung injury, a fairly rare complication of alloengeneic transfusion, has never been reported after autohaemotherapy. The only problem, noticed by the present author, is that the majority of terminally ill patients, particularly after pro-
longed chemotherapy, have poor venous access, and this may occasionally complicate blood collection and reinfusion. Otherwise patients comply quite well with two-weekly treatments continued for 5–6 months. Usually treatment is carried out here, either in the late morning or early afternoon, for practical reasons and because, if treatment does cause an elevation of plasma cortisol, this should not markedly affect its nadir at night.

Although the cost of a treatment ought not to be an important criterion, in the case of autophagotherapy it becomes relevant since the value of a collection bag is less than five pounds and therefore almost negligible compared with treatment with biological response modifiers such as IFNs, IL-2 and thyrotropic hormones. On the other hand, the issue of effectiveness is of crucial importance and the existing data, although very encouraging, are too preliminary to support a full discussion. Published reports[22] include claims that autophagotherapy yields "satisfactory" results, but the reason for the present report has been to review the state of the art and show the urgent need for appropriate and controlled studies.

WHY IS AUTOHAEMOTHERAPY FREE OF SIDE EFFECTS?

Activation either in vivo or ex vivo of blood mononuclear cells with potent cytokines induces, such as a polyclonal inflammatory-polyribocytoidic complex,[11] or endotoxin,[71] or natural lipopeptide,[33] invariably causes typical toxic effects characterized by chills, fever, hypotension, nausea, delirium, hypotension, etc., usually within a few hours after administration. When the evaluation of the optimal procedure using Ca³⁺ as a superinducing factor[44] was started, the lack of typical toxicity was at first perplexing. On the basis of is vein studies, however, it was soon realized that in order to minimize cell damage, very low oxygen concentrations were used, causing a very mild activation of blood mononuclear cells, as deduced by the consistent low production of cytokines. Moreover, the volume of blood used for each treatment is 250 ml and this represents about 1/20th of the blood volume, that is, 0.1% of the total number of lymphocytes, assuming that only 2% of the lymphocyte mass in the body are present in the blood at any given time.[66] If this estimate is correct, it means that only a minimal fraction of blood mononuclear cells undergo stimulation during each treatment. Depending upon their recirculation pattern, the activated immune cells (at the most, 2.5 x 10⁹) will readily home into various lymphoid and non-lymphoid microenvironments and there will begin to release a number of cytokines. These will react with neighbouring cells, either priming or activating them, with consequent amplification of the primary stimulus (the activation of the immune system) and minimal spillover of released cytokines. If any, into the circulation, thus explaining the lack of fever or other toxic effects. In conclusion, autophagotherapy will have a mild, yet progressive immunomodulatory effect, mostly due to cellular interactions very much resembling the physiological process of maintaining the immune system in an active state.[56] On the basis of this interpretation, autophagotherapy will result in a slow process of activation, with potential therapeutic efficacy and without side-effects.

CURRENT USES AND FUTURE PROSPECTS

Autophagotherapy appears to be a versatile immunomodulatory approach acting in various different diseases by virtue of the effects of mononuclear treatment on several blood components, which, after treatment, induce
metabolic changes and release various cytokines. The following four main categories of diseases may benefit from the treatment:

1. **Vascular disorders** from critical limb to heart, brain and retinal ischemia.

2. **Chronic viral diseases** favoured by immunodepression either due to genetic deficiency, or cytotoxic treatments and/or aging. All of these situations share either a reduced number of total T lymphocytes (CD3), or of cytotoxic T lymphocytes (CD8), or of natural killer cells, or of neutrophils with depressed cytolytic activity and phagocytosis. Production of thymic hormones, of lymphokines and antibody formation may also be depressed to some extent. Autohaemotherapy may represent an almost physiological stimulation for rejuvenating or reprogramming the immune system.

3. **Autoimmune diseases**. How autohaemotherapy can be beneficial in autoimmune diseases such as rheumatoid arthritis remains a matter of speculation. At the moment it is considered that local release of either IFNγ causing apoptosis of autotoxic T lymphocytes, or of immune-suppressive factors such as IL-10, TGFβ, IL-1β-TNFα antagonists and interleukins may suppress reactive clones.

4. **Minimal residual disease**. As cancers kills the host mostly via metastasizing cells, it is necessary to eliminate them and immunotherapy is now considered the fourth modality of therapy, after surgery, radiation and chemotherapy. To this end several approaches are being actively pursued, such as:

(a) **exogenous administration of cytokines and thymic hormones.**
(b) **adoptive immunotherapy** with autologous lymphokine-activated killer cells or tumour-infiltrating lymphocytes with exogenous IL-2, or cells cloned with human genes coding for TNFs or IL-2, and.
(c) **therapy with monospecific or bispecific antibodies.**

In this context autohaemotherapy is an approach based on using inducers able to elicit endogenous production of cytokines. The advantages of autohaemotherapy are its lack of toxicity and the resulting equilibrium, although slow, stimulation of cytokine production, accompanied by improved oxygenation and metabolism.

There are other approaches involving treatments with oxygen/ozone mixtures either ex vivo or in vivo. In vivo treatments include either intravenous, or intrarterial (particularly in critical limb ischemia) administration of a gaseous oxygen/ozone mixture, or of ozone-saturated isotonic solution. Colorectal insufflation of oxygen/ozone (up to 800 ml) has been used, mainly in Germany, to treat colon cancer, and to treat Intractable diarrhoea in AIDS patients in the USA.

Ex vivo treatment could be intensified either by carrying out autohaemotherapy very frequently (it has been repeated three times in the same session), or by extracorporeal circulation of the whole blood volume against oxygen/ozone. Finally, colonization of erythrocytes may be avoided by specifically collecting large numbers of autologous leukocytes via several procedures. These, unfortunately, are somewhat lengthy with a potential risk of contamination and at this stage are not being pursued.

ACKNOWLEDGEMENTS

I am very grateful to Mrs Helen Cartar Bocci for English revision. This work has been partially supported by Ministero Universitari Ricevute Scientifiche e Tecnologiche (MURST) (40%), and by the National Research Council (CNR), Rome – Target Project “Applicazioni cliniche delle risorse oncologiche”.
REFERENCES

20 Goldstein BD, Rudolf OK: Effect of

38. Weng DTW, Elor A, Matzilew K, et al: Eosinophils from patients with blood...
59 Rosenberg SA, Lotze MT, Male JJ: New